Search results for "Time projection chambers"

showing 10 items of 21 documents

Performance study of a 3×1×1 m3 dual phase liquid Argon Time Projection Chamber exposed to cosmic rays

2021

We report the results of the analyses of the cosmic ray data collected with a 4 tonne (3×1×1 m3) active mass (volume) Liquid Argon Time-Projection Chamber (TPC) operated in a dual-phase mode. We present a detailed study of the TPC's response, its main detector parameters and performance. The results are important for the understanding and further developments of the dual-phase technology, thanks to the verification of key aspects, such as the extraction of electrons from liquid to gas and their amplification through the entire one square metre readout plain, gain stability, purity and charge sharing between readout views. peerReviewed

Physics::Instrumentation and Detectorsilmaisimettutkimuslaitteetparticle tracking detectorstime projection chambersneutriinotlarge detector systems for particle and astroparticle physicshiukkasfysiikkakosminen säteilyneutrino detectors
researchProduct

NEXT-100 Technical Design Report (TDR). Executive summary

2012

[EN] In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (ßß0v) in 136XE at the Laboratorio Subterráneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout pla…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhotomultiplierPhysics - Instrumentation and DetectorsBar (music)Time projection chambersFOS: Physical scienceschemistry.chemical_elementWavelength shifterTracking (particle physics)7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)chemistry.chemical_compoundXenonOptics0103 physical sciences010306 general physicsInstrumentationMathematical PhysicsPhysicsTime projection chamber010308 nuclear & particles physicsbusiness.industryDetectorFísicaTetraphenyl butadieneDetectorsInstrumentation and Detectors (physics.ins-det)Gas detectorsDetectors de gasoschemistryDetector design and construction technologies and materialsbusinessJournal of Instrumentation
researchProduct

Design and characterization of the SiPM tracking system of NEXT-DEMO, a demonstrator prototype of the NEXT-100 experiment

2013

NEXT-100 experiment aims at searching the neutrinoless double-beta decay of the Xe-136 isotope using a TPC filled with a 100 kg of high-pressure gaseous xenon, with 90% isotopic enrichment. The experiment will take place at the Laboratorio Subterraneo de Canfranc (LSC), Spain. NEXT-100 uses electroluminescence (EL) technology for energy measurement with a resolution better than 1% FWHM. The gaseous xenon in the TPC additionally allows the tracks of the two beta particles to be recorded, which are expected to have a length of up to 30 cm at 10 bar pressure. The ability to record the topological signature of the beta beta 0 nu events provides a powerful background rejection factor for the bet…

Enginyeria -- InstrumentsMECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASBar (music)Tracking (particle physics)7. Clean energy01 natural sciencesEngineering instrumentsTECNOLOGIA ELECTRONICAchemistry.chemical_compoundData acquisitionSilicon photomultiplierOptics0103 physical sciencesPhysical instrumentsVisible and IR photons (solid-state)010306 general physicsInstrumentationPhoton detectors for UVMathematical PhysicsDetectors de radiacióPhysics010308 nuclear & particles physicsDynamic rangebusiness.industryTime projection Chambers (TPC)Electrical engineeringTetraphenyl butadieneFísicaTracking systemDetectorsGaseous imaging and tracking detectorschemistryNuclear countersParticle tracking detectors (Solid-state detectors)Física -- InstrumentsbusinessDark current
researchProduct

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

2020

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

TechnologyHIGH-ENERGYPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detectorbeam transportNoble liquid detectors (scintillation ionization double-phase)Cms Experıment01 natural sciences7. Clean energy09 EngineeringParticle identificationHigh Energy Physics - Experiment030218 nuclear medicine & medical imagingHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineNoble liquid detectors (scintillationDetectors and Experimental TechniquesInstrumentationInstruments & Instrumentationphysics.ins-dettime resolutionMathematical PhysicsPhysics02 Physical SciencesTime projection chamberLarge Hadron ColliderDetectorInstrumentation and Detectors (physics.ins-det)double-phase)Nuclear & Particles PhysicsLIGHTNeutrinoParticle Physics - ExperimentperformanceNoble liquid detectors(scintillation ionization double-phase)noiseCERN LabLarge detector systems for particle and astroparticle physics Noble liquid detectors (scintillation ionization double-phase) Time projection Chambers (TPC)530 Physicsenergy lossTime projection chambersFOS: Physical sciencesParticle detectorNuclear physics03 medical and health sciencesneutrino: deep underground detector0103 physical sciencesionizationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]signal processingactivity reportScience & Technology010308 nuclear & particles physicshep-exLarge detector systems for particle and astroparticle physicsTime projection Chambers (TPC)530 Physiksensitivitycalibrationtime projection chamber: liquid argonExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicsingle-phase)Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation ionization double-phase); Time projection Chambers (TPC)High Energy Physics::Experimentphoton: detectorparticle identificationcharged particle: irradiationBeam (structure)
researchProduct

Highly-parallelized simulation of a pixelated LArTPC on a GPU

2023

The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The alg…

multiplication and inductionpulse formationscintillationtutkimuslaitteethiukkasfysiikkaelectric fieldsnoble liquid detectorscharge transportdetector modelling and simulations IIsimulation methods and programsMonte Carlo -menetelmätilmaisimetelectron emissiondouble-phaseprosessointiionizationalgoritmittime projection chamberssimulointiTPC
researchProduct

Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array

2013

NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and "blob" regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent e…

PhotomultiplierMECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhysics - Instrumentation and DetectorsPhysical measurementsParticle tracking detectors (Gaseous detectors)Time projection chambersPattern recognition SystemsFísica -- Mesuramentschemistry.chemical_elementFOS: Physical sciencesTracking (particle physics)01 natural sciences7. Clean energyTECNOLOGIA ELECTRONICAXenonSilicon photomultiplierOpticsCluster analysisDouble beta decayPattern recognition0103 physical sciencesCalibrationReconeixement de formes (Informàtica)Calibratge010306 general physicsInstrumentationImage resolutionMathematical PhysicsDetectors de radiacióPhysicsCalibration and fitting methods010308 nuclear & particles physicsbusiness.industryDetectorCluster findingFísicaInstrumentation and Detectors (physics.ins-det)Double-beta decay detectorsAnàlisi de conglomeratschemistryNuclear countersCalibrationbusiness
researchProduct

Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture

2014

[EN] A technical description of NEXT-MM and its commissioning and first performance is reported. Having an active volume of ∼35 cm drift × 28 cm diameter, it constitutes the largest Micromegas-read TPC operated in Xenon ever constructed, made by a sectorial arrangement of the 4 largest single wafers manufactured with the Microbulk technique to date. It is equipped with a suitably pixelized readout and with a sufficiently large sensitive volume (∼23 l) so as to contain long (∼20 cm) electron tracks. First results obtained at 1 bar for Xenon and Trymethylamine (Xe-(2%)TMA) mixture are presented. The TPC can accurately reconstruct extended background tracks. An encouraging fu…

Enginyeria -- InstrumentsMECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASMaterials sciencePhysics - Instrumentation and DetectorsTime projection chambersParticle tracking detectors (Gaseous detectors)chemistry.chemical_elementTrimethylamineFOS: Physical sciencesElectron7. Clean energyEngineering instrumentsTECNOLOGIA ELECTRONICAchemistry.chemical_compoundXenonOpticsWafer[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationMathematical PhysicsDetectors de radiacióTime projection chamberbusiness.industryActive volumeMicroMegas detectorInstrumentation and Detectors (physics.ins-det)Double-beta decay detectorschemistryVolume (thermodynamics)Nuclear countersFísica nuclearbusiness
researchProduct

Search for heavy neutrinos with the T2K near detector ND280

2019

This paper reports on the search for heavy neutrinos with masses in the range 140<MN<493  MeV/c2 using the off-axis near detector ND280 of the T2K experiment. These particles can be produced from kaon decays in the standard neutrino beam and then subsequently decay in ND280. The decay modes under consideration are N→ℓ±απ∓ and N→ℓ+αℓ−β(−)ν(α,β=e,μ). A search for such events has been made using the Time Projection Chambers of ND280, where the background has been reduced to less than two events in the current dataset in all channels. No excess has been observed in the signal region. A combined Bayesian statistical approach has been applied to extract upper limits on the mixing elements of heav…

decay modes [neutrino]GENERAL-THEORYmixing [neutrino]Physics::Instrumentation and Detectorsneutrino: heavy: search forKAMIOKANDE01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsHigh Energy Physics - Experiment (hep-ex)LIMITSsecondary beam [neutrino/mu]neutrino: decay modes[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics Experimentsneutrino: massmedia_commonPhysicsVMSMJ-PARC LabPhysicsstatistical analysis: BayesianK: decayheavy neutrinos T2K Experiment Time Projection Chambersmass dependenceGeneral theoryT2K ExperimentTime Projection ChambersPhysical SciencesChristian ministrydata analysis methodFOS: Physical sciencesLibrary scienceheavy: search for [neutrino]Astronomy & AstrophysicsBayesian [statistical analysis]530near detector0103 physical sciencesDARK-MATTERmedia_common.cataloged_instanceddc:530Early careerEuropean unionS077A00010306 general physicsS077A01heavy neutrinosScience & Technology010308 nuclear & particles physicsbackgroundhep-exHigh Energy Physics::PhenomenologyFísicaneutrino/mu: secondary beamtime projection chamberdecay [K]mass [neutrino]Hypothetical particle physics models Particle phenomenaHigh Energy Physics::Experimentneutrino: mixingstatisticalexperimental resultsPhysical Review D
researchProduct

SiPMs coated with TPB: coating protocol and characterization for NEXT

2012

[EN] Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless \bb decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifte…

Materials sciencePhysics - Instrumentation and DetectorsFOS: Physical scienceschemistry.chemical_elementengineering.materialWavelength shifterTracking (particle physics)7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)XenonSilicon photomultiplierCoating0103 physical sciencesSensitivity (control systems)Visible and IR photons (solid-state)010306 general physicsInstrumentationPhoton detectors for UVMathematical PhysicsScintillationTime projection chamber010308 nuclear & particles physicsbusiness.industryTime projection Chambers (TPC)FísicaDetectorsInstrumentation and Detectors (physics.ins-det)Gas detectorsScintillators scintillation and light emission processes (solid gas and liquid scintillators)Detectors de gasoschemistryParticle tracking detectors (Solid-state detectors)engineeringOptoelectronicsbusiness
researchProduct

Initial results on energy resolution of the NEXT-White detector

2018

One of the major goals of the NEXT-White (NEW) detector is to demonstrate the energy resolution that an electroluminescent high pressure xenon TPC can achieve for high energy tracks. For this purpose, energy calibrations with 137Cs and 232Th sources have been carried out as a part of the long run taken with the detector during most of 2017. This paper describes the initial results obtained with those calibrations, showing excellent linearity and an energy resolution that extrapolates to approximately 1% FWHM at Q$_{\beta\beta}$.

High energyPhysics - Instrumentation and DetectorsTime projection chamberschemistry.chemical_elementFOS: Physical sciences01 natural sciencesXenonOpticsEngineeringAffordable and Clean Energy0103 physical sciences010306 general physicsInstrumentationMathematical PhysicsLarge detector-systems performancePhysics010308 nuclear & particles physicsbusiness.industryDetectorResolution (electron density)LinearityInstrumentation and Detectors (physics.ins-det)Double-beta decay detectorsNuclear & Particles PhysicsOther Physical SciencesFull width at half maximumchemistryHigh pressurePhysical SciencesAnalysis and statistical methodsbusinessEnergy (signal processing)
researchProduct